《倍数和因数》的内容与原始教材大不相同。在旧教材中,除法的概念最初是建立的,然后在此基础上认识了因子倍数,但现在倍数和因子是在不理解除法的情况下直接认识的。数学中的“初始概念”一般很难教,这部分内容学生第一次接触时很难掌握。首先,这个名字是抽象的,在现实生活中很少被提及。对于这样的概念教学,学生要真正理解、掌握和判断,需要一个长期的消化和理解过程。
首先,说到教材
(1)教材的位置和内容:在学习本单元之前,学生已经知道了100,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000然而,这仅仅是对数字的一种肤浅的理解,它为学生进一步学习常见的倍数和常见的因子,以及分数的近似除法、一般除法和四种运算打下了基础。
(2)教学目标:
知识和技能目标:
1.让学生理解倍数和因子的含义,掌握求数的倍数和因子的方法,找出数的倍数、最大因子数、最小因子数及其数的特征。
情感和价值目标:
2.让学生初步认识到,他们可以从一个新的角度研究非零自然数的特征及其相互关系,培养学生观察、分析和抽象概括的能力,体会教学内容的奇妙和乐趣,激发学生对数学的好奇心。
(3)教学重点:
理解倍数和因子的含义和方法
(4)教学困难:
掌握求数的倍数和因子的方法。
第二,谈谈设计理念
首先,从学生的运算开始,利用学生已有的乘法知识和矩形的长、宽、面积之间的关系,由浅入深,在运算中引入倍数和因子的概念。
其次,通过学生的讨论、交流和相互评价,促使学生优化求数的倍数和数的因子的方法,从而提高和巩固学生方法表达的完整性和有效性,避免学生只掌握对方法的理解,不能充分、正确地表达方法。
三、谈谈教学过程:
(1)合作与交流,揭示主题
使用12个大小完全相同的小方块来展示不同的姿势。为了避免简单的操作,引导学生通过计算来思考他是如何摆姿势的。组织沟通,写出计算公式和概念识别。
(2)教学理念,积极和消极的促进
通过横向阅读和纵向阅读,形成了一个相对系统的知识概念,整个前提已经在时间上表现出来:它是一个不含0的自然数。让学生举例、示范并相互交谈。最后,学生不容易想到老师给出的例子:4×4=16,18÷6=3,这使学生不仅能从乘法的角度思考,也能从除法的角度思考,同时也为后面寻找数因子的方法做好了准备。
(3)树立怀疑、疑问,激发学生反思
当教学生寻找一个数的倍数时,“只说12和18是3的倍数(黑板写:3的倍数)。3的倍数只有12和18吗?”组织沟通:3的倍数是多少?学生们相互评价,交流学习成果,提高知识的综合教学,加强探索,提高思维难度。“你几分钟内写完了吗?如果你再给我半分钟呢?为什么?”
(4)判断教学内容的深化形成了反思——学习——强化的整个学习过程。当学生做出“6是倍数”的正确判断后,他们不会简单地改变章节,而是以此为契机。
对话引入“教学找数因子”,形成知识的相互联系和差异。
“谈话:我们必须澄清谁是谁的倍数,谁是谁的因素。所以6可能是一些数的倍数,或者是一些数的因子,然后让我们找到一些数的因子。你能找到所有36个因素吗?”
(5) D
学生评论道:“问:你用什么方法找到一个数因子,你能把它介绍给每个人吗?还有别的办法吗?”
1×36=36 36÷1=36
2×18=36 36÷2=18
3× 12=36 36÷ 3=12
4×9=363 6÷4=9
6× 6=36 36÷ 6=6
自主而不失指导,掌握而不失总结
为什么5不是36的因子?(因为36/5不能被精确分割,所以有一个余数)
摘要:不能被这个数整除的数不是这个数的因子。
摘要:我们可以从乘法或除法中找到一个数的因子。
问:在36到15的两个数的因子例子中,你发现了什么?
结论:一个数的倍数和因子是不同的,但它们通过乘法和除法是相互依存和相互联系的。
四、教学板书(略)
点击查看小学五年级数学教案,阅读更多相关文章!